Manifolds with Bakry-Emery Ricci Curvature Bounded Below
نویسندگان
چکیده
منابع مشابه
Eigenvalue Comparison on Bakry-emery Manifolds
It is called shrinking, steady, or expanding soliton if a > 0, a = 0 or a < 0 respectively. More generally (M, g, f) is called a Bakry-Emery manifold if the so-called Bakry-Emery Ricci tensor Rcij + fij ≥ agij for some a ∈ R. In this paper we apply the modulus of continuity estimates developed in [AC,AC2,AC3] to give a different proof of an eigenvalue comparison estimate on Bakry-Emery manifold...
متن کاملMetric measure spaces with Riemannian Ricci curvature bounded from below
In this paper we introduce a synthetic notion of Riemannian Ricci bounds from below for metric measure spaces (X, d,m) which is stable under measured Gromov-Hausdorff convergence and rules out Finsler geometries. It can be given in terms of an enforcement of the Lott, Sturm and Villani geodesic convexity condition for the entropy coupled with the linearity of the heat flow. Besides stability, i...
متن کاملP-forms and Ricci Flow with Bounded Curvature on Manifolds
In this paper, we study the evolution of L p-forms under Ricci flow with bounded curvature on a complete non-compact or a compact Riemannian manifold. We show that under curvature pinching conditions on such a manifold, the L norm of a smooth p-form is non-increasing along the Ricci flow. The L∞ norm is showed to have monotonicity property too.
متن کاملBakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds
The aim of the present paper is to bridge the gap between the Bakry-Émery and the Lott-Sturm-Villani approaches to provide synthetic and abstract notions of lower Ricci curvature bounds. We start from a strongly local Dirichlet form E admitting a Carré du champ Γ in a Polish measure space (X,m) and a canonical distance dE that induces the original topology of X. We first characterize the distin...
متن کاملHighly connected manifolds with positive Ricci curvature
We prove the existence of Sasakian metrics with positive Ricci curvature on certain highly connected odd dimensional manifolds. In particular, we show that manifolds homeomorphic to the 2k-fold connected sum of S × S admit Sasakian metrics with positive Ricci curvature for all k. Furthermore, a formula for computing the diffeomorphism types is given and tables are presented for dimensions 7 and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Pure Mathematics
سال: 2016
ISSN: 2160-0368,2160-0384
DOI: 10.4236/apm.2016.611061